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Abstract: A new controller based on the modified Riccati-like Equation is developed in this paper.
The interval type 2 fuzzy model is applied and embedded in the controller to ensure the robustness to
parameter uncertainties and also to support calculation progress. The proposed input control includes
equivalent control and robustness control. The equivalent control is found from the conventional
analysis with the sliding surface, but this control is not sufficient to resolve the uncertainties and
disturbances such as error approximation of the fuzzy model. Thus, a proportional-integral-derivative
(PID) controller and matrices of the traditional model of Riccati equation are utilized to ensure the
robustness. In the synthesis of this control part, the H infinity technique is adopted and the stability
of the system is proved using Lyapunov stability. Subsequently, to validate the effectiveness of
the proposed controller, it was applied to vibration control of a vehicle seat suspension with a
magnetorheological (MR) damper subjected to stiffness variation due to the magnitude of the input
current. In this problem, two types of road conditions, bump and random step wave, were adopted
and control performance was evaluated in both simulations and experiments. Based on these
evaluations, the proposed controller provides high control performances, effectively controlling the
acceleration and displacement at the driver position.

Keywords: robust control; PID control; H-infinity technique; interval type 2 fuzzy control; hybrid
control; vibration control; magnetorheological (MR) damper; vehicle seat suspension

1. Introduction

The more modern is the machine used, the more complicated is the control required. This slogan
is currently popular in various industrial societies. The objectives of this slogan, of course, are to
achieve higher control efficiency, less power consumption, higher safety and so forth. In control of
complicated systems, the model of adaptive control is one of the favored solutions because of its
stability and high efficiency. There are two types of adaptive control: indirect and direct controls.
The indirect model is the best choice for design of adaptive control, which can be changed to direct
model by applying constant parameters for the denominator in main input control. In addition, the
main advantage of the adaptive control is its combination with other controls such as fuzzy model,
PID (Proportional-Integral-Derivative), optimal control, and sliding mode control. In [1], the indirect
adaptive model was studied for MIMO (Multiple-Input and Multiple-Output) nonlinear system. In
this study, three main factors of the control, namely actuator fault, unknown system function, and
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sensor fault, were considered and the fuzzy model was applied in the adaptation laws related to the
above three factors. The controller developed in [2] is different from the controller in [1], using a new
function as a reset mechanism for the adaptive control law. The objective of the reset solution was to
improve the transient performance by leading the estimated parameters to the best values at the initial
steps of adaptation. In fact, the reset mechanism was designed by setting a time related boundary
of stability and instability times, and this boundary was solved by adaptation laws. Recently, the
adaptive control has been used for control unknown phenomena such as dead-zone [3]. Basically, the
unknown problem in control was solved by using Nussbaum-type function, and the parameter of
the Nussbaum function was updated by adaptation law and the fuzzy model. From the above three
studies on adaptive control, the Lyapunov and its modification are main functions to evaluate the
stability and design of adaptation laws. The technique using PID in adaptive control [4–10] was also
continuously analyzed.

The sliding surface of sliding mode control was used as a first solid function for design of
adaptive control and the PID control was used to ensure control robustness through adaptation
laws [4]. It is noted that the technique in [4] followed the conventional design of adaptive control
with non-modification of the robustness control to improve performance of the system. Several works
similar to the one in [4] have been undertaken [5–7]. The technique proposed in [8] was basically
similar to the work done in [4–7], where the main input control (robust control) used an additive
input uncertainty and regression function. Thus, the adaptation laws were derived from the matrices
of the conventional Lyapunov equation and error vector. The disadvantage of this approach is less
flexibility with the change of disturbances of environment, although the uncertainty of system can be
controlled well. The flexible property of the adaptation laws with the Lyapunov equation through
Riccati-like equation with PID was studied in [9]. This study presented a new combination of the
Riccati-like equation with the conventional robustness PID control, in which the sliding surface is the
main parameter of the adaptation laws. Another solution is to use exponential function as presented
in [10] where the library of design PID control in adaptive control can be formulated. The application
of the modified Riccati-like equation was also studied in [11–14]. These studies demonstrated that the
Lyapunov equation through the Riccati-like equation could improve control performance of the system
subjected to uncertainties and/or disturbances. It is noted that other effective methods for calculation
based on smart grid controller associated with the energy management have been developed in [15–17].
In these methods, the global optimization of points related to the mesh of controlled sub-station is
used to achieve control robustness.

The main technical contribution of this work is to develop a new controller which is robust to
uncertainties and disturbances. Especially, in this work, the model of interval type 2 fuzzy (IT2FNN) is
used, which has several salient features [18–21]. Then, to achieve fast calculation of the IT2FNN, the
granular clustering method [18] is used. The application of the IT2FNN can ensure enhanced control
performances in the presence of disturbances and uncertainties of the system by optimizing the values
for calculation of the embedded functions. To achieve the final goal of this work, the following are
sequentially undertaken: (i) a new hybrid control including sliding mode control, H infinity technique,
PID, and fuzzy neural network model is formulated; (ii) a new Riccati-like equation with the parameters
of sliding surface of sliding mode control, PID, and fuzzified value is proposed; and (iii) the proposed
control is applied to vibration control of the vehicle seat suspension system equipped with MR damper.
The proposed controller is evaluated through both computer simulation and experimental realization,
and the control effectiveness is validated showing well-controlled acceleration and displacement at the
driver position.
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2. New Adaptive Fuzzy PID Controller

2.1. Interval Type 2 Fuzzy Neural Network Model

The model of interval type 2 fuzzy (IT2FNN) and the granular clustering method in [18,21] are
adopted to design a robust controller. The rule base of IT2FNN can be expressed as follows.

Rn f
j: If hn1is Hj

n f 1and . . . and hnmis Hj
n f mThen g is a j

0 +
m∑

i=1

a j
i hni (1)

where Hj
n f i(i = 1, . . . , m; j = 1, . . . , n) are the fuzzy sets of the data, n is the number of fuzzy rules, and

a j
i are the interval sets of the fuzzy model. The output of the fuzzy model [20,21] is then determined by

gn f =
gnl + gnr

2
=

θT
nlξ

f
nl + θT

nrξ
f
nr

2
(2)

In the above, θT
nl =

[
wl

1 wl
2 wl

3 . . .w
l
m

]
and θT

nr =
[
wr

1 wr
2 wr

3 . . .w
r
m

]
are the weighting vectors, and

the weighted firing strength vectors are given by ξ
f
nl and ξ

f
nr.

2.2. Adaptive Fuzzy PID Control

In this study, a general form of the mth-order nonlinear system is used as follows:

.
xns = fn(xns) + gn(xns)u(t) + dn(t) (3)

In Equation (3), the functions fn(xns) ∈ Rm and gn(xns) ∈ Rm are two unknown vectors; u(t) ∈ R1 is
the input control; dn(t) ∈ Rm is the disturbance (internal and external disturbances); and

∣∣∣dn(t)
∣∣∣ ≤ δdn,

where δdn ∈ Rm is boundary of dn(t) and xns = [xn1, xn2, . . . , xnm] = [xn1,
.
xn1, . . . , xn1

(m−1)]
T
∈ Rm is the

state variables. The system in Equation (3) can be rewritten as follows.

.
xns = fn0(xns) + gn0(xns)u(t) + Dn(t) (4)

where Dn(t) = δfn + δgnu(t) + dn(t) denotes the disturbances given by

Dn = [0, 0, . . . , Dn0]
T, fn0(xns) = [xn2, . . . , xnm, fn0]

T, gn0(xns) = [0, . . . , 0, gn0]
T,

δfn = [0, 0, . . . , δ fn0]
T,δgn = [0, 0, . . . , δgn0]

T

Based on Equation (2), the relationship between the system in Equation (4) and IT2FNN is determined
as follows:

fn00(xns) = fn0(xns)g f = θn fξn f (5)

gn00(xns) = gn0(xns)gn f = θngξng (6)

where θn f =
[
θl

n f ,θu
n f

]T
, θg =

[
θl

g,θu
g

]T
and ξn f = ξng = [ξnl,ξnu]. Note that θn f ,θng are the centroid

of consequent vectors. ξn f and ξng are consequent membership vectors of fn, gn, respectively. The
sliding surface s∆ of sliding mode control is defined as follows.

s∆ = k1xn1 + k2xn2 + k3xn3 + . . .+ kmxm =
m∑

i=1

kixi (7)
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where Km = [km, km−1, km−2, . . . , k1]. It is noted that km = 1 in this analysis. The sliding surface in
Equation (7) is rewritten as follows:

xnm = −k1xn1 − k2xn2 − k3xn3 − . . .− km−1xnm−1 + s∆ (8)

A new vector
~
xs is defined by

~
xns = [xn1 xn2 xn3 . . . xnm−1]

T, and thus the system in Equation (4)
is rewritten as: .

~
xns = Sn1

~
xns + ST

n2s∆ (9)

where

Sn1 =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
−k1 −k2 −k3 . . . −km−1

, Sn2 =


0
0
.
1


The derivative of Equation (7) is obtained as follows.

.
s∆ = k1

.
xn1 + k2

.
xn2 + k3

.
xn3 + . . .+ km−1

.
xnm−1 + fn0(xns) + gn0(xns)u(t) + Dn(t) (10)

The lumped uncertainty is expressed by

wnl = γ̃n fξn f + γ̃ngξngu + Dn (11)

where γ̃n f = fn0(xns) − f ∗n00(xns) and γ̃ng = gn0(xns) − g∗n00(xns). Substituting Equation (11) into
Equation (10) yields the following equation.

.
s∆ =

m−1∑
i=1

kixni+1 + f ∗n00(xns) + g∗n00(xns)u + wnl (12)

Then, Equation (12) can be written by substituting values of the fuzzy mode as

.
s∆ =

m−1∑
i=1

kixni+1 + θ∗n fξn f + θ∗ngξngu + wnl (13)

where

θ∗n f = argminθn f ∈∆θn f

[
supxns∈∆xn

∣∣∣ fn(xns) − fn00(xns)
∣∣∣],

θ∗ng = argminθng∈∆θng

[
supxns∈∆xn

∣∣∣gn(xns) − gn00(xns)
∣∣∣], ∆θn f =

{
θn f ∈ Rm, ‖θn f ‖ ≤ εn f

}
,

∆θng =
{
θng ∈ Rm, ‖θng‖ ≤ εng

}
, ∆xn =

{
xns ∈ Rm, ‖xns‖ ≤ εnx

}
In the above equations, εn f , εng, εnx are constant boundaries. An equivalent control of the system

is derived from Equation (13) based on assumption of wnl ≈ 0:

un1 = −
1

θ̂ngξng

m−1∑
i=1

kixni+1 + θ̂n fξn f

 (14)

To guarantee the robustness and stability in control, a new robust control un2 is suggested
as follows:

un2 =
1

θ̂ngξng

 −
m−1∑
i=1

P(m−1)ixni −
s∆
β + 1

2 Γns∆ξ f z
~
xnsPnSn2ST

n2Pn
~
xns

T + KPST
2 EnET

n PnBP+

+KI
∫

ST
2 EnET

n PnBPdt + KDST
2

.
En

.
E

T
n PnBP

 (15)
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where en = xnd − xns, En = [en1, en2, . . . , enm] is tracking error and xd is the desired value. The value of
BP is determined as follows:

.
xns = fn0(xns) + gn0(xns)u(t) + Dn(t) = AP(xns(t), t)xns(t) + BP(xns(t), t)u(t) + Dn(t) (16)

where AP ∈ Rm×m, BP ∈ Rm×v, u(t) ∈ Rv(v = 1). The value Γn is the adaptive parameter related the
modified Riccati-like equation, and its boundary is given by ∆Γn =

{
Γn ∈ R, ‖Γn‖ ≤ εnΓ, Γnξ f z ≤ ρ

}
; εnΓ

is constant boundary. The matrix Pn = PT
n ≥ 0 in which its result is a solution of a new modified

Riccati-like equation given by

PnSn1 + ST
n1Pn + Qn − s∆Γnξ f zPnSn2ST

n2Pn + ρPnSn2ST
n2P−KPξ f zST

n2EnET
n PnBP−

−KIξ f z
∫

ST
n2EnET

n PnBPdt−KDξ f zST
n2

.
En

.
E

T
n PnBP = 0

(17)

where
{
s∆Γnξ f z, KPξ f z, KIξ f z, KDξ f z

}
≤ ρ. The boundaries of KP, KI, and KD are determined

as ∆KP = {KP ∈ R, ‖KP‖ ≤ εnKP}, ∆KI = {KI ∈ R, ‖KI‖ ≤ εnKI}, and ∆KD = {KD ∈ R, ‖KD‖ ≤ εnKD},
respectively. In these boundaries, εnKP, εnKI and εnKD are positive constants. Finally, the control u of
the system is determined as follows.

u = un1 + un2 (18)

Remark 1. The modified Riccati-like equation given in Equation (17) is a new format including three parameters
of the classical PID control and the fuzzy neural networks model. This format opens a new approach to improve
performance of the system through the adaptation laws. The conventional Riccati-like equation is fixed with
elements related to the Hamiltonian equation, matrices and vectors of the system. The expansion of the Riccati-like
equation proposed in this work can bring a flexibility for calculation and combination with other controllers to
enhance control robustness against severe disturbances.

Remark 2. To evaluate the stability and robustness of the system, Lyapunov function of the system in Equation (3)
is suggested as follows.

V =
1
2

s∆
2 +

1
2

~
xnsPn

~
xns

T +
1

2η1
γ̃2

n f +
1

2η2
γ̃2

ng +
1

2η3
Γ2

n +
1

2η4
K2

P +
1

2η5
K2

I +
1

2η6
K2

D (19)

Based on the evaluation of the Lyapunov equation, six adaptation laws are found:

.
γ̃n f = −η1s∆ξn f (20)

.
γ̃ng = −η2s∆ξngu (21)

.
Γn = −η3s∆ξ f z

~
xnsPnSn2ST

n2Pn
~
xns

T (22)

.
KP = −η4

(
s∆ST

n2EnET
n PnBP +

1
2
ξ f z

~
xnsST

n2EnET
n PnBP

~
xns

T
)

(23)

.
KI = −η5

(
s∆

∫
ST

n2EnET
n PnBPdt +

1
2
ξ f z

~
xns

[∫
ST

n2EnET
n PnBPdt

]
~
xns

T
)

(24)

.
KD = −η6

(
s∆ST

n2

.
En

.
E

T
n PnBP +

1
2
ξ f z

~
xns

[
Sn2ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T
)

(25)

Theorem 1. The main adaptation laws of the proposed adaptive PID controller given by Equations (20)–(25) are
modified to satisfy Lyapunov stability using the projection algorithm as follows.
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.
γ̃n f =


−η1s∆ξn f if ‖γ̃nf‖ < εn f or

(
‖γ̃n f ‖ = εn f and s∆ξn f γ̃n f ≥ 0

)
−η1s∆ξn f + η1

(‖γ̃n f ‖
2
−εn f )s∆ξn f γ̃n f

δ1‖γ̃n f ‖
2 if ‖γ̃n f ‖ = εn f and s∆ξn f γ̃n f < 0

(26)

.
γ̃ng =


−η2s∆ξngu if ‖γ̃ng‖ < εng or

(
‖γ̃g‖ = εng and s∆ξnguγ̃ng ≥ 0

)
−η2s∆ξngu + η2

(‖γ̃ng‖
2
−εng)s∆ξnguγ̃ng

δ2‖γ̃ng‖
2 if ‖γ̃ng‖ = εng and s∆ξnguγ̃ng < 0

(27)

.
Γn =


−η3s∆ξ f z

~
xnsPnSn2ST

n2Pn
~
xns

T if ‖Γn‖ < εnΓ or
(
‖Γn‖ = εnΓ + δ3 and s∆ξ f z

~
xnsPnSn2ST

n2Pn
~
xns

TΓn ≥ 0
)

−η3s∆ξ f z
~
xnsPnSn2ST

n2Pn
~
xns

T + η3
(‖Γn‖

2
−εnΓ)s∆ξ f z

~
xnsPnSn2ST

n2Pn
~
xns

TΓn

δ3‖Γn‖
2

if ‖Γn‖ = εnΓ and
s∆ξ f z

~
xnsPnSn2ST

n2Pn
~
xns

TΓn < 0
(28)

.
KP =



−η4

(
s∆ST

n2EnET
n PnBP+

+ 1
2ξ f z

~
xnsST

n2EnET
n PnBP

~
xns

T

) if ‖KP‖ < εnKP or
‖KP‖ = εnKP

and
(

s∆ST
n2EnET

n PnBP+

+ 1
2ξ f z

~
xnsST

n2EnET
n PnBP

~
xns

T

)
KP ≥ 0


−η4

(
s∆ST

n2EnET
n PnBP+

+ 1
2ξ f z

~
xnsST

n2EnET
n PnBP

~
xns

T

)
+

+η4

 ‖KP‖
2
−

−εnKP


 s∆ST

n2EnET
n PnBP+

+ 1
2ξ f z

~
xnsST

n2EnET
n PnBP

~
xns

T

KP

δ4‖KP‖
2

if ‖KP‖ = εnKP

and
(

s∆ST
2 EnET

n PnBP+

+ 1
2ξ f z

~
xnsST

n2EnET
n PnBP

~
xns

T

)
< 0

(29)

.
KI =



−η5

 s∆
∫

ST
n2EnET

n PnBPdt+
+ 1

2ξ f z
~
xns

[∫
ST

n2EnET
n PnBPdt

]~
xns

T

 if ‖KI‖ < εnKI or


‖KI‖ = εnKI and s∆

∫
ST

n2EnET
n PnBPdt+

+ 1
2ξ f z

~
xns

[∫
ST

n2EnET
n PnBPdt

]~
xns

T

KI ≥ 0


−η5

 s∆
∫

ST
n2EnET

n PnBPdt+
+ 1

2ξ f z
~
xns

[∫
ST

n2EnET
n PnBPdt

]~
xns

T

+
+η5

 ‖KI‖
2
−

−εnKI


 s∆

∫
ST

n2EnET
n PnBPdt+

+ 1
2ξ f z

~
xns

[∫
ST

n2EnET
n PnBPdt

]~
xns

T

KI

δ5‖KI‖
2

if ‖KI‖ = εnKI and s∆
∫

ST
n2EnET

n PnBPdt+
+ 1

2ξ f z
~
xns

[∫
ST

n2EnET
n PnBPdt

]~
xns

T

KI < 0

(30)

.
KD =



−η6

 s∆ST
n2

.
En

.
E

T
n PnBP+

+ 1
2ξ f z

~
xns

[
Sn2ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T


if ‖KD‖ < εnKD or
‖KD‖ = εnKD

and

 s∆ST
n2

.
En

.
E

T
n PnBP+

+ 1
2ξ f z

~
xns

[
Sn2ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T

KD ≥ 0


−η6

 s∆ST
n2

.
En

.
E

T
n PnBP+

+ 1
2ξ f z

~
xns

[
Sn2ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T

+

+η6

 ‖KD‖
2
−

−εnKD




s∆ST
n2

.
En

.
E

T
n PnBP+

+ 1
2ξ f z

~
xns

[
Sn2ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T

KD

δ6‖KD‖
2

if ‖KD‖ = εnKD

and

 s∆ST
n2

.
En

.
E

T
n PnBP+

+ 1
2ξ f z

~
xns

[
Sn2ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T

KD < 0

(31)

where δ1, δ2, δ3, δ4, δ5, δ6 are chosen parameters related to the boundaries fn(xs), gn(xs), Γn, KP, KI,
and KD of the nonlinear model and the PID control.

Proof 1. The derivative function of the sliding surface is rewritten by substituting Equation (18) into
Equation (13) as follows.

.
s∆ =

m−1∑
i=1

kixni+1 + θ∗n fξn f + θ∗ngξngu + wnl − θ̂n fξn f + θ̂n fξn f − θ̂ngξngu + θ̂ngξngu

=
[
γ̃n fξn f + γ̃ngξngu + wnl

]
+


1
2 Γnξ f z

~
xnsPnSn2ST

n2Pn
~
xns

T
−

m−1∑
i=1

Pn(m−1)ixni −
s∆
β +

+KPST
n2EnET

n PnBP + KI
∫

ST
n2EnET

n PnBPdt + KDST
n2

.
En

.
E

T
n PnBP


(32)
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where γ̃n f = θ∗n f − θ̂n f , γ̃ng = θ∗ng − θ̂ng. From the equation of Lyapunov (Equation (19)), the derivative
is obtained as follows.

.
V = s∆

.
s∆ + 1

2

.
~
xnsPn

~
xns

T + 1
2

~
xnsPn

.
~
xns

T + 1
η1

.
γ̃n f γ̃n f +

1
η2

.
γ̃ngγ̃ng +

1
η3

.
ΓnΓn+

+ 1
η4

.
KPKP + 1

η5

.
KIKI +

1
η6

.
KDKD

= s∆

 γ̃n fξn f + γ̃ngξngu + wnl +
1
2 Γnξ f z

~
xnsPnSn2ST

n2Pn
~
xns

T
−

m−1∑
i=1

Pn(m−1)ixni −
s∆
β + KPST

n2EnET
n PnBP+

+KI
∫

ST
n2EnET

n PnBPdt + KDST
n2

.
En

.
E

T
n PnBP

+
+

[
1
2

~
xns

T
(
PnSn1 + ST

n1Pn
)~
xns + s∆

m−1∑
i=1

Pn(m−1)ixni

]
+ 1

η1

.
γ̃n f γ̃n f +

1
η2

.
γ̃ngγ̃ng +

1
η3

.
ΓnΓn +

1
η4

.
KPKP+

+ 1
η5

.
KIKI +

1
η6

.
KDKD

(33)

The equivalence function of Equation (17) is written by

PnSn1 + ST
n1Pn = −Qn + s∆Γnξ f zPnSn2ST

n2Pn − ρPnSn2ST
n2Pn + KPξ f zST

n2EnET
n PnBP+

+KIξ f z
∫

ST
n2EnET

n PnBPdt + KDξ f zST
n2

.
En

.
E

T
n PnBP

(34)

From Equations (33) and (34), the derivative function of Lyapunov can be obtained as follows.

.
V = s∆γ̃n fξn f + s∆γ̃ngξngu + s∆wnl +

1
2 s∆Γnξ f z

~
xnsPnSn2ST

n2Pn
~
xns

T
−

s∆
2

β −
1
2

~
xns

TQn
~
xns+

+s∆KPST
n2EnET

n PnBP + s∆KI
∫

ST
n2EnET

n PnBPdt + s∆KDST
n2

.
En

.
E

T
n PnBP−s∆

m−1∑
i=1

Pn(m−1)ixni+

+ 1
2 s∆Γnξ f z

~
xnsPnSn2ST

n2Pn
~
xns

T
−

1
2ρ

~
xnsPnSn2ST

n2Pn
~
xns

T + 1
2 KPξ f z

~
xns

[
ST

n2EnET
n PnBP

]~
xns

T+

+ 1
2 KIξ f z

~
xns

[∫
ST

n2EnET
n PnBPdt

]~
xns

T+

+ 1
2 KDξ f z

~
xns

[
ST

n2

.
En

.
E

T
n PnBP

]
~
xns

T + 1
η1

.
γ̃n f γ̃n f +

1
η2

.
γ̃ngγ̃ng ++ 1

η3

.
ΓnΓn +

1
η4

.
KPKP + 1

η5

.
KIKI+

+ 1
η6

.
KDKD + s∆

m−1∑
i=1

Pn(m−1)ixni

(35)

Using Equations (11) and (34), and the adaptation laws in Equations (20)–(25), Equation (35) is
rewritten by

.
V =

−1
2

~
xns

TQn
~
xns −

 s∆√
β
−

√
βwnl

2

+ βwnl
2

− 1
2
ρ

~
xnsPnSn2ST

n2Pn
~
xns

T
≤ −

1
2

~
xns

TQn
~
xns + βwnl

2 (36)

Now, integrating Equation (36) from t = 0 to t = T yields the following equation

V(0) −V(T) + β

T∫
0

wnl
2dt ≥

1
2

T∫
0

~
x

T
nsQn

~
xnsdt (37)

where V(0) = 1
2 s∆

2(0) + 1
2

~
xns(0)Pn

~
xns

T(0) + 1
2η1
γ̃2

n f (0) + 1
2η2
γ̃2

ng(0) + 1
2η3

Γ2
n(0) + 1

2η4
K2

P(0) +
1

2η5
K2

I (0) +
1

2η6
K2

D(0) It is noted that the value V(T) > 0, and thus Equation (37) can be written
as follows:

V(0) + β

T∫
0

wnl
2dt ≥

1
2

T∫
0

~
xns

TQn
~
xnsdt ≥ 0 (38)

This result verifies that the stability of the system is guaranteed, and thus the proof of the
adaptation laws is completed.
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3. Application to Vibration Control

3.1. Seat Suspension Model

As mentioned in the Introduction, to validate the effectiveness of the proposed control, the vehicle
seat suspension model with MR damper shown in Figure 1 is adopted. The governing equations are
derived as follows [9].

msd
..
xs = −ks(xs − x0) − csd

( .
xs −

.
x0

)
+ k1d(x1 − xs) + c1d

( .
x1 −

.
xs

)
+ FdMR (39)

m1d
..
x1 = −k1d(x1 − xs) + c1d

( .
x1 −

.
xs

)
(40)
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The above equations can be rewritten using the state-space model as follows.
.
x11d =

.
xs = x22d

.
x22d = f11d(x11d, x22d, x33d, x44d) + g11d(x11d, x22d, x33d, x44d)u

.
x33d =

.
x1 = x44d

.
x44d = f22d(x11d, x22d, x33d, x44d)

(41)

where

f11d(x11d, x22d, x33d, x44d) = −
ksd
msd

(x11d − x0) −
csd
msd

(
x22d −

.
x0

)
+

k1d
msd

(x33d − x11) +
c1d
msd

(x44d − x22d),
g11d(x11d, x22d, x33d, x44d) =

1
msd

, u = FMR,

f22d(x11d, x22d, x33d, x44d) = −
k1d
m1d

(x33d − x11d) −
c1d
m1d

(x44d − x22d).

The damping force of the MR damper is determined as [9]:

FMRd = (ca + cbν)(x44d − x22d) + k0d(x33d − x11d) + (αa + αbν)φ (42)

where
.
φ = −κ|x44d − x22d|+ λ(x44d − x22d)

∣∣∣φ∣∣∣+ ϕ(x44d − x22d). Using Equation (42), the voltage to be
applied to MR damper ν is obtained as.

ν =
FMRd − [ca(x44d − x22d) + k0d(x33d − x11d) + αaφ]

cb(x44d − x22d) + αbφ
(43)
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The voltage ν is changed to the applied current, and then this current is used as the input with the
relationship of u = FMRd. The parameters for the seat suspension and MR damper are given in [9].

3.2. Computer Simulations

In this study, the proposed controller was evaluated from both computer simulation and
experimental realization. To emulate the road profiles in practical environment, two road excitations
were adopted: random bump road and random step wave road. These excitations have different
properties, and were collected from the real roads. The random bump road has small differences of
magnitude of vibration, and it was used for checking the stability under small difference of amplitude
and/or small disturbances. For the random step wave excitation, the large difference of amplitude
shows severe disturbance which exists inside the performance. Hence, these excitations were the best
choice for evaluating the control performance related to the road profiles. It is remarked again that the
parameters of the seat suspension are listed in [9]. The maximal force of the MR damper was 1000 N
(±5%), and the maximal current was 2 A. The parameters of the fuzzy model are presented in [9] with
six clusters, and the sigma value for Gaussian function was chosen as 0.4. The constant values of the
sliding surface [k1, k2] for two excitations were chosen as [0.02, 1]. The initial value Γn of the Riccati-like
equation was chosen as 0.01. The value Γn of as 0.01 was initial one for the adaptation law in Equation
(28). The adaptation law is the derivative function, hence Γn must be chosen as a positive value. The
value of 0.01 was finally chosen based on the trial-and-error method by observing control performance.
Besides, the matrix Qn of the Riccati-like equation was chosen as Qn = [−2 0; 0 − 2], and the value β
was 20,000. The values of η1, η2, η3, η4, η5, η6 of adaptation laws were chosen as 700 for all. The values
of εn f , εng, εnΓ, εnKP, εnKI, and εnKD were chosen as 10 for all. The values of δ1, δ2, δ3, δ4, δ5, and δ6

were chosen as 0.05 for all. The values of KP, KI, KD were chosen as (10, 150, 50), and (10, 150, 10) for
random bump road and random step wave road, respectively.

In this simulation, the initial states used were [0.01 2.5] for the dynamic states, [0.06 0] for
the observer states, and 3.5 m/s2 for the initial acceleration. In this simulation, the fourth-order
Runge–Kutta method was applied for solving the differential equation. Simulation results are shown
in Figures 2–5. In Figure 2, the displacement of the seat before and after controlling is presented.
The controlled displacement of the seat is less than the initial vibration. The initial amplitude of
vibration before and after using the control is in range of −0.06 to 0.08 m, as shown in Figure 2a, and
−0.002 to 0.004 m, as shown in Figure 2c, respectively. Subsequently, the velocity shown in Figure 2b,d
of the seat is also decreased with the stability. The power spectral density of these vibrations and the
driver position is shown in Figure 3. It is clearly observed that the proposed control is very efficient for
controlling the random bump road excitation. This result directly indicates that the vibration with small
difference of amplitude and trivial disturbance can be controlled well by using the proposed controller.
The simulated results under the random step wave road are shown in Figures 4 and 5. In Figure 4, the
displacement of the seat is much lower than the initial vibration. The initial amplitude of vibration
before and after using the control is in range of −1.5 to 1.5 m, as shown in Figure 4a, and −0.004
to 0.004 m, as shown in Figure 4c, respectively. The velocity shown in Figure 4b,c of the proposed
control is also stable without large vibration. These results can be seen in Figure 5 with the power
spectral density. The simulation results show very effective vibration control of the seat suspension
system subjected to severe vibration with mixed disturbances. This is from the new modification of
the Riccati-like equation with embedded parameters of the PID controller, and the combination of the
sliding surface of sliding mode control with the fuzzy neural networks model to take account for the
uncertainties and disturbances.
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4. Experimental Results and Discussions

To implement the proposed controller, an experiment setup is shown in Figure 6, in which
several sensors such as linear variable differential transformer (LVDT) transducer, accelerometers at
the seat and driver were used to get the feedback signals to the controller. Detail information for the
sensor is shown in [9]. In this experiment, two comparative controllers were adopted for comparison:
Comparative Controller 1 [22] and Comparative Controller 2 [9]. These comparative controllers are the
type of hybrid controller including the Riccati-like equations and the combination of sliding mode
control and fuzzy control in their design. This choice is valuable for evaluating the proposed controller,
which is also a kind of hybrid controller. As in the computer simulation, the random-step-wave road
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excitation was chosen for the experiment. This excitation was embedded in the shaker system, as
shown in Figure 6. It is noteworthy that the computer system included two part: one for the hydraulic
shaker control and the other for the proposed controller with Dspace 1104. The applied current for
MR damper was used with maximum value 2 A for three controllers. The limitation of the maximum
value of the applied current was reasonable to evaluate three controllers showing their best in control
performance under severe vibration environment. The measured results of the controllers are presented
in Figures 7–9. In Figure 7, the responses of the controllers including displacement, velocity, and
acceleration of seat and driver are shown. It is clearly seen that the proposed controller provides better
vibration control performance than the comparative controllers [9,23]. The applied current of three
controls are shown in Figure 8. In this figure, the input controls appear to be very complicated, but it is
clear the maximum input current has been limited by 2A. Now, to more clearly observe the benefits of
the proposed controller, the power frequency responses are presented in Figure 9. It is remarked here
that, according to the standard ISO 2631-1, the acceleration at the driver position should be less than
2.5 m/s2. It is seen in Figure 9a that three controllers are effective in control vibration, but the proposed
controller clearly provides lower values than the other controllers [9,23]. Based on the decrease of the
acceleration of the seat, the acceleration at the driver position is also decreased, as shown in Figure 9b.
The acceleration of the proposed control and the comparative controller 2 [9] is nearly similar. This is
originated from the damping ratio of the seat frame which is nonlinear. To compare three controllers,
quantification was undertaken in this work: the performance of three controllers was continuously
evaluated using the ToD (Transmissibility of Displacement) and ToA (Transmissibility of Acceleration)
values of the seat [9]. The ToD values of the random step wave excitation were 0.213565, 0.358171,
and 0.246641 for the proposed controller, Comparative Controller 1 [23], and Comparative Controller
2 [9], respectively. Similarly, from the acceleration responses, the ToA values of random step wave
excitation were identified as 0.170182, 0.396618, and 0.257991 for the proposed controller, Comparative
Controller 1 [23], and Comparative Controller 2 [9], respectively. From the above results, the proposed
controller is the best, showing outstanding vibration control with the stability of the system under
severe road disturbance.
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5. Conclusions

In this study, a new controller using a new modified Riccati-like equation with three parameters
of the PID controller was proposed and its effectiveness was validated from computer simulation and
experimental realization. The robustness of the controller was improved using the sliding surface of
sliding mode controller and the fuzzy neural networks model. The H_infinity technique was also used
for connecting the above controller and the parameters of the Riccati-like equation. The stability of the
proposed control was proven based on the Lyapunov stability criterion. The formulated controller
was applied to vibration control of the vehicle seat suspension system with MR (magnetorheological)
damper subjected to severe road excitations: random bump road and random step wave road. It
was demonstrated that the proposed controller can bring control robustness, showing well-controlled
unwanted vibrations at the seat and the driver position in terms of the displacement and accelerations.
In addition, it was shown from comparative work that the proposed controller can provide the best
vibration control performance compared two existing controllers, which are kinds of hybrid controllers
designed for robustness guarantee of control system. The superior property of the proposed controller
was also confirmed by calculating two factors of transmission: ToD and ToA. The results presented in
this work are self-explanatory, justifying that the proposed controller can apply to any physical system
subjected to disturbances and/or uncertainties. As a second phase work, a new robust controller will
be formulated by considering both the variation of the main system parameters such as sprung mass
and unmodeled dynamics of the driver such as human body model.



www.manaraa.com

Appl. Sci. 2019, 9, 4540 15 of 16

Author Contributions: D.X.P. derived all equations and did simulations and experiment to achieve performance
results and S.-B.C. created the idea and made the problem formulation. In addition, both authors wrote the paper
together by carefully checking the main technical contribution and sound as well.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (No. 2017R1A2B3003026). This financial support is gratefully acknowledged.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Bounemeur, A.; Chemachema, M.; Essounbouli, N. Indirect adaptive fuzzy fault-tolerant tracking control for
MIMO nonlinear systems with actuator and sensor failures. ISA Trans. 2018, 79, 45–61. [CrossRef] [PubMed]

2. Davanipour, M.; Khayatian, A.R.; Dehghani, M.; Arefi, M.M. A solution for enhancement of transient
performance in nonlinear adaptive control: Optimal adaptive reset based on barrier Lyapunov function. ISA
Trans. 2018, 80, 169–175. [CrossRef] [PubMed]

3. Zhang, W.; Su, H. Fuzzy adaptive control of nonlinear MIMO systems with unknown dead zone outputs. J.
Frankl. Inst. 2018, 355, 5690–5720. [CrossRef]

4. Moradi, M.; Fekih, A. Adaptive PID-sliding-mode fault-tolerant control approach for vehicle suspension
systems subject to actuator faults. IEEE Trans. Veh. Technol. 2014, 63, 1041–1054. [CrossRef]

5. Cao, K.; Gao, X.; Lam, H.-K.; Vasilakos, A. H∞ fuzzy PID control synthesis for Takagi–Sugeno fuzzy systems.
IET Control. Theory Appl. 2016, 10, 607–616. [CrossRef]

6. Chamsai, T.; Jirawattana, P.; Radpukdee, T. Robust adaptive PID controller for a class of uncertain nonlinear
systems: An application for speed tracking control of an SI engine. Math. Probl. Eng. 2015, 2015. [CrossRef]

7. Mahmoodabadi, M.J.; Abedzadeh Maafi, R.; Taherkhorsandi, M. An optimal adaptive robust PID controller
subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems. Appl. Soft Comput. 2017, 52,
1191–1199. [CrossRef]

8. Subramanian, R.G.; Elumalai, V.K.; Karuppusamy, S.; Canchi, V.K. Uniform ultimate bounded robust model
reference adaptive PID control scheme for visual servoing. J. Frankl. Inst. 2017, 354, 1741–1758. [CrossRef]

9. Phu, D.X.; An, J.-H.; Choi, S.-B. A novel adaptive PID controller with application to vibration control of a
semi-active vehicle seat suspension. Appl. Sci. 2017, 7, 1055. [CrossRef]

10. Van, M.; Do, X.P.; Mavrovouniotis, M. Self-tuning fuzzy PID-nonsingular fast terminal sliding mode control
for robust fault tolerant control of robot manipulators. ISA Trans. 2019. [CrossRef]

11. Phu, D.X.; Choi, S.-M.; Choi, S.-B. A new adaptive hybrid controller for vibration control of a vehicle seat
suspension featuring MR damper. J. Vib. Control. 2017, 23, 3392–3413. [CrossRef]

12. Phu, D.X.; Huy, T.D.; Mien, V.; Choi, S.-B. A new composite adaptive controller featuring the neural network
and prescribed sliding surface with application to vibration control. Mech. Syst. Signal. Process. 2018, 107,
409–428. [CrossRef]

13. Do, X.P.; Nguyen, Q.H.; Choi, S.-B. New hybrid optimal controller applied to a vibration control system
subjected to severe disturbances. Mech. Syst. Signal. Process. 2019, 124, 408–423.

14. Phu, D.X.; Hung, N.Q.; Choi, S.-B. A novel adaptive controller featuring inversely fuzzified values with
application to vibration control of magnetorheological seat suspension system. J. Vib. Control. 2018, 24,
5000–5018.

15. Li, Y.; Zhang, H.; Liang, X.; Huang, B. Event-triggered-based distributed cooperative energy management
for multi-energy systems. IEEE Trans. Ind. Inform. 2019, 15, 2008–2022. [CrossRef]

16. Zhang, H.; Li, Y.; Gao, D.W.; Zhou, J. Distributed optimal energy management for energy internet. IEEE
Trans. Ind. Inform. 2019, 13, 3081–3097. [CrossRef]

17. Li, Y.; Zhang, H.; Huang, B.; Han, J. A distributed Newton–Raphson-based coordination algorithm for
multi-agent optimization with discrete-time communication. Neural Comput. Appl. 2018, 1–15. [CrossRef]

18. Wang, X.; Liu, X.; Zhang, L. A rapid fuzzy rule clustering method based on granular computing. Appl. Soft
Comput. 2014, 24, 534–542. [CrossRef]

19. Mendel, J.M. Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 2004, 12,
84–98. [CrossRef]

20. Juang, C.-F.; Chen, C.-Y. Data-driven interval type-2 neural fuzzy system with high learning accuracy and
improved model interpretability. IEEE Trans. Cybern. 2013, 43, 1781–1795. [CrossRef]

http://dx.doi.org/10.1016/j.isatra.2018.04.014
http://www.ncbi.nlm.nih.gov/pubmed/29754854
http://dx.doi.org/10.1016/j.isatra.2018.07.041
http://www.ncbi.nlm.nih.gov/pubmed/30093103
http://dx.doi.org/10.1016/j.jfranklin.2018.05.066
http://dx.doi.org/10.1109/TVT.2013.2282956
http://dx.doi.org/10.1049/iet-cta.2015.0513
http://dx.doi.org/10.1155/2015/510738
http://dx.doi.org/10.1016/j.asoc.2016.09.007
http://dx.doi.org/10.1016/j.jfranklin.2016.12.001
http://dx.doi.org/10.3390/app7101055
http://dx.doi.org/10.1016/j.isatra.2019.06.017
http://dx.doi.org/10.1177/1077546316629597
http://dx.doi.org/10.1016/j.ymssp.2018.01.040
http://dx.doi.org/10.1109/TII.2018.2862436
http://dx.doi.org/10.1109/TII.2017.2714199
http://dx.doi.org/10.1007/s00521-018-3798-1
http://dx.doi.org/10.1016/j.asoc.2014.08.004
http://dx.doi.org/10.1109/TFUZZ.2003.822681
http://dx.doi.org/10.1109/TSMCB.2012.2230253


www.manaraa.com

Appl. Sci. 2019, 9, 4540 16 of 16

21. Liang, Q.; Mendel, J.M. Interval type-2 fuzzy logic systems: Theory and design. IEEE Trans. Fuzzy Syst. 2000,
8, 535–550. [CrossRef]

22. Ciccarella, G.; Dalla Mora, M.; Germani, A. A Luenberger-like observer for nonlinear systems. Int. J. Control.
1993, 57, 537–556. [CrossRef]

23. Wu, T.-S.; Karkoub, M.; Wang, H.; Chen, H.-S.; Chen, T.-H. Robust tracking control of MIMO underactuated
nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control. IEEE
Trans. Fuzzy Syst. 2017, 25, 905–918. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/91.873577
http://dx.doi.org/10.1080/00207179308934406
http://dx.doi.org/10.1109/TFUZZ.2016.2586970
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Introduction 
	New Adaptive Fuzzy PID Controller 
	Interval Type 2 Fuzzy Neural Network Model 
	Adaptive Fuzzy PID Control 

	Application to Vibration Control 
	Seat Suspension Model 
	Computer Simulations 

	Experimental Results and Discussions 
	Conclusions 
	References

